3,730 research outputs found

    Phonon-Plasmon Interaction in Metal-Insulator-Metal Localized Surface Plasmon Systems

    Full text link
    We investigate theoretically and numerically the coupling between elastic and localized surface plasmon modes in a system of gold nanocylinders separated from a thin gold film by a dielectric spacer of few nanometers thickness. That system supports plasmon modes confined in between the bottom of the nanocylinder and the top of the gold film, which arise from the formation of interference patterns by short-wavelength metal-insulator-metal propagating plasmon. First we present the plasmonic properties of the system though computer-simulated extinction spectra and field maps associated to the different optical modes. Next a simple analytical model is introduced, which allows to correctly reproduce the shape and wavelengths of the plasmon modes. This model is used to investigate the efficiency of the coupling between an elastic deformation and the plasmonic modes. In the last part of the paper, we present the full numerical simulations of the phononic properties of the system, and then compute the acousto-plasmonic coupling between the different plasmon modes and five acoustic modes of very different shape. The efficiency of the coupling is assessed first by evaluating the modulation of the resonance wavelength, which allows comparison with the analytical model, and finally in term of time-modulation of the transmission spectra on the full visible range, computed for realistic values of the deformation of the nanoparticle.Comment: 12 pages, 9 figure

    Discussions on "Riemann manifold Langevin and Hamiltonian Monte Carlo methods"

    Full text link
    This is a collection of discussions of `Riemann manifold Langevin and Hamiltonian Monte Carlo methods" by Girolami and Calderhead, to appear in the Journal of the Royal Statistical Society, Series B.Comment: 6 pages, one figur

    Nanoplasmonic Arrays with High Spatial Resolutions, Quality, and Throughput for Quantitative Detection of Molecular Analytes

    Get PDF
    Recent developments in nanoplasmonic sensors promise highly sensitive detection of chemical and biomolecular analytes with quick response times, affordable costs, and miniaturized device footprints. These include plasmonic sensors that transduce analyte-dependent changes to localized refractive index, vibrational Raman signatures, or fluorescence intensities at the sensor interface. One of the key challenges, however, remains in producing such sensors reliably, at low cost, using manufacturing compatible techniques. In this chapter, we demonstrate an approach based on molecular self-assembly to deliver wafer-level fabrication of nanoplasmonic interfaces, with spatial resolutions down to a few nanometers, assuring high quality and low costs. The approach permits systematic variation to different geometric variables independent of each other, allowing the significant opportunity for the rational design of nanoplasmonic sensors. The ability to detect small molecules by SERS-based plasmonic sensing is compared across different types of metal nanostructures including arrays of nanoparticle clusters, nanopillars, and nanorod and nanodiscs of gold

    Une infrastructure logicielle pour instrumenter l'expérimentation des EIAH

    Get PDF
    International audienceCet article a pour objet de présenter une plate-forme logicielle développée dans le but de faciliter le travail des chercheurs dans la mise en place et la réalisation d'expérimentations dans le domaine des EIAH. Ce travail a été réalisé dans le cadre de l'action « Shared Virtual Lab » (SVL) du réseau d'excellence Kaleidoscope, et les outils ont été exploités pour la réalisation d'une expérimentation complexe mettant en oeuvre simultanément plusieurs EIAH développés au sein de l'équipe MeTAH du LIG. Le scénario décrivant l'activité des élèves et des enseignants impliqués dans l'expérimentation est décrit en langage LDL et interprété par la plate-forme. Les traces d'activité produites par les logiciels expérimentés et par la plate-forme sont centralisées dans une base de données XML. Elles ont été exploitées en temps réel par un outil de suivi destiné aux enseignants

    Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine

    Get PDF
    Incident light interacting with noble-metal nanoparticles with smaller sizes than the wavelength of the incident light induces localized surface plasmon resonance (LSPR). In this work a gold nanostructured surface was used for the immobilization of a 5\u2032 end Thiol modified DNA probe to develop a LSPR nanobiosensor for the detection of the spoiler wine yeast Brettanomyces bruxellensis. Gold was evaporated to obtain a gold thickness of 4 nm. DNA (2 \u3bcL) from the target microorganism and the negative control at various concentrations were used to test the specificity and sensitivity of the LSPR technique. Changes in the optical properties of the nanoparticles due to DNA-probe binding are reflected in the shift of LSPR extinction maximum (\u3bbmax). The results obtained using as target microorganism B. bruxellensis, and as negative control Saccharomyces cerevisiae demonstrated the specificity of both the DNA-probe and the protocol. The LSPR spectrophotometry technique detects 0.1 ng/\u3bcL DNA target confirming the possibility to utilize this system for the detection of pathogen microorganisms present in low amount in food and beverage samples. \ua9 2015 Elsevier B.V. All rights reserved

    Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface OPEN

    No full text
    International audienceMetal-insulator-metal systems exhibit a rich underlying physics leading to a high degree of tunability of their spectral properties. We performed a systematic study on a metal-insulator-nanostructured metal system with a thin 6 nm dielectric spacer and showed how the nanoparticle sizes and excitation conditions lead to the tunability and coupling/decoupling of localized and delocalized plasmonic modes. We also experimentally evidenced a tunable Fano resonance in a broad spectral window 600 to 800 nm resulting from the interference of gap modes with white light broad band transmitted waves at the interface playing the role of the continuum. By varying the incident illumination angle shifts in the resonances give the possibility to couple or decouple the localized and delocalized modes and to induce a strong change of the asymmetric Fano profile. All these results were confirmed with a crossed comparison between experimental and theoretical measurements, confirming the nature of different modes. The high degree of control and tunability of this plasmonically rich system paves the way for designing and engineering of similar systems with numerous applications. In particular, sensing measurements were performed and a figure of merit of 3.8 was recorded ranking this sensor among the highest sensitive in this wavelength range. Surface plasmon polariton (SPP) and Localized surface plasmon (LSP) have attracted numerous researchers due to their high technological potential. SPP's are surface waves confined near a metal dielectric interface that can propagate over large distances 1 , making them appealing for applications in biosens-ing 2,3. On the other hand LSP resonances can be defined as the localized resonance condition that massively enhances the electromagnetic field in the vicinity of a metal nanoparticle (NP), when the NP have dimensions much smaller than the excitation wavelength 4. LSP resonance is very sensitive to changes in the NP's dimensions, the dielectric constant of the surrounding media and the nature of the substrate. Because of intense local electrical field enhancements and sharp resonance excitation peaks, metallic NPs are of great interest for applications in surface enhanced Raman spectroscopy (SERS) 5 , chemical and biological sensors 3,6 , cancer treatment 7 and light harvesting 8–10. Recently, strong attention was paid to the potentials of SPP and LSP combinations by investigating metallic NPs on top of metallic thin films. Several studies on such systems have indeed shown the coupling and hybridization between localized and delocalized modes, and the effect of the thickness of the dielectric spacer. Those works have revealed that such coupled systems exhibit enhanced optical properties and larger tunability of their spectral properties compared to uncoupled systems 1,4,11–2

    Angular plasmon response of gold nanoparticles arrays: approaching the Rayleigh limit

    Get PDF
    AbstractThe regular arrangement of metal nanoparticles influences their plasmonic behavior. It has been previously demonstrated that the coupling between diffracted waves and plasmon modes can give rise to extremely narrow plasmon resonances. This is the case when the single-particle localized surface plasmon resonance (λLSP) is very close in value to the Rayleigh anomaly wavelength (λRA) of the nanoparticles array. In this paper, we performed angle-resolved extinction measurements on a 2D array of gold nano-cylinders designed to fulfil the condition λRA<λLSP. Varying the angle of excitation offers a unique possibility to finely modify the value of λRA, thus gradually approaching the condition of coupling between diffracted waves and plasmon modes. The experimental observation of a collective dipolar resonance has been interpreted by exploiting a simplified model based on the coupling of evanescent diffracted waves with plasmon modes. Among other plasmon modes, the measurement technique has also evidenced and allowed the study of a vertical plasmon mode, only visible in TM polarization at off-normal excitation incidence. The results of numerical simulations, based on the periodic Green's tensor formalism, match well with the experimental transmission spectra and show fine details that could go unnoticed by considering only experimental data

    Robust SERS Platforms Based on Annealed Gold Nanostructures Formed on Ultrafine Glass Substrates for Various (Bio)Applications

    Get PDF
    In this study, stable gold nanoparticles (AuNPs) are fabricated for the first time on commercial ultrafine and nonconductive glass coverslips coated with gold thin layers (2 nm, 4 nm, 6 nm, and 8 nm) at 25 \ub0C and annealed at high temperatures (350 \ub0C, 450 \ub0C, and 550 \ub0C) on a hot plate for different periods of time. Such gold nanostructured coverslips were systematically tested via surface enhanced Raman spectroscopy (SERS) to identify their spectral performances in the presence of different concentrations of a model molecule, namely 1,2-bis-(4-pyridyl)-ethene (BPE). By using these SERS platforms, it is possible to detect BPE traces (10 1212 M) in aqueous solutions in 2 min (120 s)

    Magnetic Mode Coupling in Hyperbolic Bowtie Meta-Antennas

    Get PDF
    Hyperbolic metaparticles have emerged as the next step in metamaterial applications, providing tunable electromagnetic properties on demand. However, coupling of optical modes in hyperbolic meta-antennas has not been explored. Here, we present in detail the magnetic and electric dipolar modes supported by a hyperbolic bowtie meta-antenna and clearly demonstrate the existence of two magnetic coupling regimes in such hyperbolic systems. The coupling nature is shown to depend on the interplay of the magnetic dipole moments, controlled by the meta-antenna effective permittivity and nanogap size. In parallel, the meta-antenna effective permittivity offers fine control over the electrical field spatial distribution. Our work highlights new coupling mechanisms between hyperbolic systems that have not been reported before, with a detailed study of the magnetic coupling nature, as a function of the structural parameters of the hyperbolic meta-antenna, which opens the route toward a range of applications from magnetic nanolight sources to chiral quantum optics and quantum interfaces
    • …
    corecore